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Abstract:  43	
Pleiotropy – when a single mutation affects multiple traits – is a controversial topic with 44	
far-reaching implications. Pleiotropy plays a central role in ongoing debates about how 45	
complex traits evolve and whether biological systems tend to be modular or organized 46	
such that every gene has the potential to affect many traits. Pleiotropy is also critical to 47	
initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by 48	
selecting for mutations that encourage growth in some conditions at the expense of 49	
others. Research in these fields, and others, would benefit from understanding the extent 50	
to which pleiotropy reflects inherent relationships among phenotypes that correlate no 51	
matter the perturbation (vertical pleiotropy), versus the action of genetic changes that 52	
impose correlations between otherwise independent traits (horizontal pleiotropy). We 53	
tackle this question by using high-throughput single-cell phenotyping to measure 54	
thousands of pairwise trait correlations across hundreds of thousands of cells representing 55	
hundreds of genotypes of the budding yeast, Saccharomyces cerevisiae. We map 56	
pleiotropic quantitative trait loci using genotypes derived from a cross between natural 57	
strains, and we separate vertical and horizontal pleiotropy by partitioning trait 58	
correlations into within- and between-genotype correlations. We investigate how 59	
pleiotropy can change by using genotypes from mutation-accumulation lines that 60	
experienced minimal selection, and by tracking trait correlations through the cell-division 61	
cycle. We find ample evidence of both vertical and horizontal pleiotropy, and observe 62	
that trait correlations depend on both genetic background and cell-cycle position. Our 63	
results suggest a nuanced view of pleiotropy in which trait correlations are highly context 64	
dependent and biological systems occupy a middle ground between modularity and 65	
interconnectedness. These results also suggest an approach to select pairs of traits that are 66	
more likely to remain correlated across contexts for applications in evolutionary 67	
medicine. 68	
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Introduction 89	
Pleiotropy exists when a single mutation affects multiple traits [1,2]. Often, 90	

pleiotropy is defined instead as a single gene contributing to multiple traits, although 91	
what is implied is the original definition — that a single change at the genetic level can 92	
have multiple consequences at the phenotypic level [2]. As our ability to survey the 93	
influence of genotype on phenotype improves, examples of pleiotropy are growing [3-7]. 94	
For example, individual genetic variants have been associated with seemingly disparate 95	
immune, neurological, and digestive symptoms in humans and mice [8,9]. Genes 96	
affecting rates of cell division across diverse environments and drug treatments have been 97	
identified in microbes and cancers [10,11]. A view emerging from genome-wide 98	
association studies is that variation in complex traits is “omnigenic” in the sense that 99	
many loci indirectly contribute to variation in many traits [12,13]. 100	

 101	
However, the extent of pleiotropy remains a major topic of debate because, 102	

despite its apparent prevalence, pleiotropy is thought to be evolutionarily 103	
disadvantageous. The more traits a mutation affects, the more likely it is that the mutation 104	
will have a negative impact on at least one. Pervasive pleiotropy should therefore 105	
constrain evolution [14], exacting what is known as a cost of complexity or cost of 106	
pleiotropy [10,15-18]. This cost may bias which mutations underlie adaptation, for 107	
example, toward less-pleiotropic cis-regulatory changes over more-pleiotropic changes in 108	
trans-acting factors [19,20], or toward changes to proteins that participate in relatively 109	
few biological processes [21,22]. Over long periods, the cost of pleiotropy may influence 110	
the organization of biological systems, favoring a modular structure in which genetic 111	
changes influencing one group of traits have minimal impact system-wide [23-28]. 112	

At stake in the ongoing debate about the extent of pleiotropy [29-32] are some of 113	
modern biology’s prime objectives, including the prediction of complex phenotypes from 114	
genotype data [17,33,34] and the prediction of how organisms will adapt to 115	
environmental change [35,36]. These predictions are more challenging if genetic changes 116	
influence a large number of traits with complex interdependencies. Nonetheless, 117	
understanding how a given mutation influences multiple traits could be powerful, 118	
allowing prediction of some phenotypic responses given others [37,38]. Indeed, recent 119	
strategies in medicine called evolutionary traps aim to exploit pleiotropy, for example by 120	
finding genetic changes that provide resistance to one treatment while promoting 121	
susceptibility to another [39-41].  122	

The lack of consensus about the extent of pleiotropy in natural systems is in part 123	
due to poorly defined expectations for how to test for it experimentally. One key issue is 124	
that defining a phenotype is not trivial [42,43]. Consider a variant in the apolipoprotein B 125	
gene that increases low-density lipoprotein (LDL) cholesterol levels as well as the risk of 126	
heart disease. Elevated LDL promotes heart disease [44], so are these two phenotypes or 127	
one? Alternatively, consider a mutation in the phenylalanine hydroxylase gene that 128	
affects nervous system function and skin pigmentation. These dissimilar effects, both 129	
symptoms of untreated phenylketonuria (PKU), originate from the same problem: a 130	
deficiency in converting phenylalanine to tyrosine [45]. Is it fair to call mutations that 131	
have this single metabolic effect pleiotropic? Likewise, shall one call pleiotropic a 132	
mutation that makes tomatoes both ripen uniformly and taste bad, when the effect of the 133	
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mutation is to reduce the function of a transcription factor that promotes chloroplast 134	
development, which in turn necessarily affects both coloration and sugar accumulation 135	
[46]? 136	

The LDL, PKU and tomato cases are examples of vertical pleiotropy, i.e. 137	
pleiotropy that results when one phenotype influences another or both are influenced by a 138	
shared factor [4,42]. The alternative to vertical pleiotropy is horizontal pleiotropy, in 139	
which genetic differences induce correlations between otherwise independent 140	
phenotypes. It might be tempting to discard vertical pleiotropy as less “genuine” [47] or 141	
less important than horizontal pleiotropy, but that would be a mistake because vertical 142	
pleiotropy reveals important information about the underlying biological systems that 143	
produce the phenotypes in question. Consider the value in identifying yet-unknown 144	
factors in heart disease by finding traits that correlate with it, or in understanding where 145	
in a system an intervention is prone to produce undesirable side effects. Consider also 146	
that the extent and nature of vertical pleiotropy speak directly to the question of 147	
modularity: modularity is implied if vertical pleiotropy either is rare or manifests as small 148	
groups of correlated traits that are isolated from other such groups. If there is modularity 149	
then there can be horizontal pleiotropy, when particular genetic variants make links 150	
between previously unconnected modules. 151	

The above considerations suggest that a unified analysis that distinguishes and 152	
compares horizontal and vertical pleiotropy is needed to make sense of the organization 153	
and evolution of biological systems. However, existing methods of distinguishing 154	
horizontal and vertical pleiotropy are problematic because judgments must be made about 155	
which traits are independent from one another. Such judgments differ between 156	
researchers and over time. Indeed, the tomato example can be viewed as a case of 157	
horizontal pleiotropy transitioning recently to vertical pleiotropy as knowledge of the 158	
underlying system advanced. 159	

In this study, we propose and apply an empirical and analytical approach to 160	
measuring pleiotropy that relies far less on subjective notions of what constitutes an 161	
independent phenotype. The key principle is that the distinction between vertical and 162	
horizontal pleiotropy lies in whether traits are correlated in the absence of genetic 163	
variation [42]. For vertical pleiotropy, the answer is yes: because one trait influences the 164	
other or the two share an influence, non-genetic perturbations that alter one phenotype are 165	
expected to alter the other. For horizontal pleiotropy, the answer is no: genetic variation 166	
causes the trait correlation. In this study, we determined how traits correlate in the 167	
absence of genetic variation by measuring single-cell traits in clonal populations of cells. 168	

We used high-throughput morphometric analysis [48-52] of hundreds of 169	
thousands of single cells of the budding yeast Saccharomyces cerevisiae to measure how 170	
dozens of cell-morphology traits (thousands of pairs of traits) co-vary within clonal 171	
populations and between such populations representing different genotypes. Within-172	
genotype correlations report on vertical pleiotropy, whereas between-genotype 173	
correlations report on horizontal pleiotropy to the extent that they exceed the 174	
corresponding within-genotype correlations. For one set of genotypes, we used 374 175	
progeny of a cross of two natural isolates [53], which enabled not only the estimation of 176	
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vertical and horizontal pleiotropy but also the identification of quantitative trait loci 177	
(QTL) with pleiotropic effects. For another set of genotypes, we used a collection of 178	
mutation-accumulation lines, each of which contains a small number of unique 179	
spontaneous mutations [54,55], which enabled a more direct test of the ability of 180	
mutations to alter trait correlations. 181	

The traits we study – morphological features of single cells – represent important 182	
fitness-related traits [50,56,57] that contribute to processes such as cell division and 183	
tissue invasion (e.g. cancer metastasis [58]). Cell-morphological features may correlate 184	
across cells for a variety of vertical or horizontal reasons. Vertical reasons include: (1) 185	
inherent geometric constraints (e.g. on cell circumference and area); (2) constraints 186	
imposed by gene-regulatory networks (e.g. if the genes influencing a group of traits are 187	
all under control of the same transcription factor); and (3) constraints induced by 188	
developmental processes (e.g. as a yeast cell divides or “buds”, many morphological 189	
features are affected). Horizontal pleiotropy might be evident because genetic variants 190	
affecting two or more traits (that are otherwise weakly correlated) are segregating in the 191	
progeny of the cross between two natural isolates. Alternatively, horizontal pleiotropy 192	
might be evident because a particular allele strengthens the trait correlation so that 193	
genetic variation affecting one trait is more likely to affect another when that allele is 194	
present. These alternatives can be distinguished by examining trait correlations in two 195	
subsets of progeny strains defined by which natural isolate’s allele they possess at a QTL 196	
of interest.  197	

In addition to genetic variation, non-genetic variation may also alter the 198	
correlations between traits. We rely on non-genetic heterogeneity within clonal 199	
populations to serve as perturbations that reveal inherent trait correlations. However, the 200	
correlations themselves might be heterogeneous within these populations. For example, 201	
the dependencies between morphological features may change as cells divide. To control 202	
for this possibility, we performed our trait mapping and subsequent analysis after binning 203	
cells into three stages (unbudded, small-budded and large-budded cells). We further 204	
examined whether trait correlations change across the cell cycle by using a machine-205	
learning approach to more finely bin the imaged cells into 48 stages of division.  206	

 207	
Collectively, the results we present here demonstrate that both types of pleiotropy, 208	

vertical and horizontal, are prevalent for single-cell morphological traits, suggesting that 209	
biological systems occupy a middle ground between extreme modularity and extreme 210	
interconnectedness. Perhaps more surprisingly, we find that trait correlations are often 211	
context dependent, and can be altered by mutations as well as cell-cycle state. The 212	
dynamic nature of trait correlations at these different timescales encourages caution when 213	
attempting to quantify and interpret the extent of pleiotropy in nature or when making 214	
predictions about correlated phenotypic responses to the same selection pressure, as is 215	
done when crafting evolutionary traps. However, applying our approach may suggest 216	
which trait correlations are less context dependent and therefore more useful in setting 217	
such traps.  218	
 219	
 220	
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Results: 221	
 222	
QTLs with pleiotropic effects influence yeast single-cell morphology 223	

To detect genes with pleiotropic effects on cell morphology, we measured 167 224	
single-cell morphological features (e.g. cell size, bud size, bud angle, distance from 225	
nucleus to bud neck; Table S1) in 374 yeast strains that were generated in a previous 226	
study from a mating between two wild yeast isolates [53,59]. These wild isolates, one 227	
obtained from soil near an oak tree, the other from a wine barrel, differ by 0.006 SNPs 228	
per site [60] and have many heritable differences in single cell morphology [61]. For 229	
example, we find that yeast cells from the wine strain, on average, are smaller, are 230	
rounder, and have larger nuclei during budding than yeast cells from the oak strain (Fig 231	
S1).   232	

To measure their morphologies, we harvested exponentially growing cells from 233	
three replicate cultures of each of these 374 recombinant strains, and imaged on average 234	
800 fixed, stained cells per strain using high-throughput microscopy in a 96-well plate 235	
format (Fig S2). We used control strains present on each plate to correct for plate-to-plate 236	
variation (see Methods), and quantified morphological features using CalMorph software 237	
[52], which divides cells into three categories based on their progression through the cell 238	
cycle (i.e. unbudded, small-budded, and large-budded cells) and measures phenotypes 239	
specific to each category. Using 225 markers spread throughout the genome [53] and 240	
Haley-Knott regression implemented in the R package R/qtl [62,63], we identified 44 241	
QTL that contribute to variation in 158 of the surveyed morphological features (FDR = 242	
5%; Fig 1A; Table S1). Most (37) of the QTL we detected are pleiotropic, meaning each 243	
contributes to variation in more than one morphological feature (Fig 1A). The median 244	
number of traits to which each QTL contributes is six. 245	
 246	
Single genes with pleiotropic effects influence yeast single-cell morphology 247	

When a QTL affects multiple traits, it might not mean that variation in a single 248	
gene is contributing to variation in these traits but instead that linked genes are 249	
contributing to variation in distinct, individual traits. For several QTL with high 250	
pleiotropy (highlighted in Fig 1A), we sought to test whether the effects on different 251	
morphological features were due to the action of a single gene. We performed these tests 252	
by swapping the parental versions of candidate genes (i.e. we genetically modified the 253	
wine strain to carry the oak version of a given gene, and vice versa). We used the delitto 254	
perfetto technique to perform these swaps [64], such that the only difference between a 255	
parental genome and the swapped genome is the coding sequence of the single candidate 256	
gene plus up to 1 kb of flanking sequence (see Methods). Candidate genes were selected 257	
based on descriptions of the single-cell morphologies of their knockout mutants [65] and 258	
the presence of at least one non-synonymous amino acid difference between the wine and 259	
oak alleles [61].  260	

When a candidate gene contributes to the morphological differences between the 261	
wine and oak parents, we expect yeast strains that differ at only that locus to recapitulate 262	
some of the morphological differences between the wine and oak parents. Indeed, this is 263	
what we observe for PXL1, a candidate for the QTL on chromosome 11, and HOF1, a 264	
candidate for the QTL on chromosome 13 (Fig 1B; compare each plot on the right to the 265	
leftmost plot; see also Table S2). This influence is most pervasive for HOF1; both the 266	
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oak and the wine alleles have a strong effect on the morphology of the opposite parent, 267	
and their effects recapitulate the parental difference to a large extent. The pervasive 268	
influence of HOF1 on various morphological features is consistent with the fact that this 269	
gene’s product affects actin-cable organization and is involved in both polar cell growth 270	
and cytokinesis [66]. The effect of PXL1 on cell morphology is also apparent across 271	
many single-cell features, although only the oak allele has a strong effect that 272	
recapitulates the parental difference. We evaluated RAS1, a candidate for the QTL on 273	
chromosome 15, but initial tests indicated that it did not have a significant impact on 274	
most morphological features (Table S2). We also attempted to swap alleles for a 275	
candidate gene corresponding to the QTL on chromosome 8, but were unsuccessful (see 276	
Methods).  277	

A previous screen for QTL influencing single-cell morphology in the progeny of a 278	
genetically distinct pair of yeast strains (a different vineyard strain and a laboratory 279	
strain) found some of the same pleiotropic QTL that we detect in the wine and oak cross 280	
[67] (compare their Table 2 to our Table S1). In particular, we both find a QTL in the 281	
same position on chromosome 15 that influences many morphological features related to 282	
nucleus size, shape, and position in the cell (Fig 1A; orange). We also both detect a QTL 283	
near base pair 100,000 on chromosome 8 that influences cell size and shape (Fig 1A; 284	
pink). In the previous screen, the genetic basis of this QTL was shown to be a single 285	
nucleotide change within the GPA1 gene [67].  286	

The main conclusion from our gene-swapping experiments, which is consistent 287	
with the previous cell-morphology QTL study [67] as well as with comprehensive 288	
surveys of how gene deletions affect the morphology of a laboratory yeast strain [10,48], 289	
is that genes with pleiotropic effects on cell morphology are common in budding yeast. 290	
Moreover, the morphological traits involved were previously shown to influence fitness 291	
[50,56,57], which raises the question: why do so many genetic analyses (including ours) 292	
detect pleiotropy [4,8-11,13] when other work suggests that pleiotropy exacts a cost 293	
[16,17,19,20]?  294	

 295	
Dissecting pleiotropy using clonal populations of cells 296	

One hypothesis to explain pervasive pleiotropy may be that the phenotypes we 297	
chose to measure are not independent. Instead, many of these single-cell morphological 298	
features may be inherently related such that perturbing one will have unavoidable 299	
consequences on another and thus any associated limitation of adaptation will be 300	
unavoidable as well. In other words, the hypothesis is that much of the pleiotropy we 301	
observe is vertical pleiotropy. A test of this hypothesis is to ask whether traits are 302	
correlated in the absence of genetic differences. Our dataset provides a unique 303	
opportunity to perform such a test because we quantified single-cell traits for, on average, 304	
800 clonal cells per yeast strain (Fig S2). 305	

We can leverage the hierarchical structure and large sample size of our dataset to 306	
obtain precise estimates of the correlations that exist within and between strains, and 307	
thereby to distinguish vertical from horizontal pleiotropy. Because we are studying clonal 308	
families without a complicated pedigree structure, these within- and between-strain 309	
correlations are equivalent to the so-called environmental and genetic correlations of 310	
quantitative genetics [68]. Here, we use a simple (and fast) method that is appropriate for 311	
two-level hierarchical data to partition the total correlation into a pooled within-strain 312	
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component (rW) and a between-strain component (rB) [69]. One caveat of this correlation-313	
partitioning approach is that rB is effectively the correlation between strain means, which 314	
can bias estimates of genetic covariance [68]. This bias is most pronounced at small 315	
sample sizes [68], so our large sample sizes allay concern. Nonetheless, for a subset of 316	
traits, we tested whether estimates obtained from correlation partitioning are similar to 317	
those obtained from mixed-effect linear models that specify the variance-covariance 318	
structure of the experimental design. Environmental correlations estimated using both 319	
methods are nearly identical (Fig S3). Genetic correlations estimated by correlation 320	
partitioning are sometimes slightly smaller in magnitude than those obtained by linear 321	
modeling (Fig S3). This bias is conservative; it may prevent us from identifying cases 322	
where the environmental and genetic correlations significantly differ but will not tend to 323	
create such cases. Despite this reduced power, we rely on the correlation-partitioning 324	
approach, which is substantially faster, because our goal is to estimate environmental and 325	
genetic correlations for thousands of trait pairs. 326	

Unlike the mapping analysis, which considered phenotypes across all three 327	
classes of cell type (unbudded, small-budded and large-budded), this correlation-328	
partitioning analysis can only be applied to pairs of phenotypes measured in the same cell 329	
type. Two of the 37 pleiotropic QTL exclusively affect traits from different cell types: a 330	
QTL on chromosome 8 affects the short-axis length of unbudded cells and the short-axis 331	
length of large-budded cells, and a QTL on chromosome 7 affects the cell axis ratio of 332	
small-budded cells and the bud axis ratio of large-budded cells. The correlations for the 333	
trait pairs affected by these two QTL cannot be partitioned because the traits are not 334	
measured in the same cells within strains. Excluding these two QTL leaves 35 pleiotropic 335	
QTL collectively contributing to 5645 pairs of traits (378, 1081, and 4186 pairs of 336	
morphological features pertaining to unbudded, small-budded, and large-budded cells 337	
respectively). For each of these trait pairs, we partitioned the correlation between traits. 338	
In the analyses that follow, when we refer to rW or rB, we mean the magnitudes of these 339	
correlations, as the sign has no relevance for arbitrary pairs of traits. 340	
 341	
Inherent relationships between traits contribute to pleiotropy  342	

We focus first on vertical pleiotropy by analyzing correlations that exist in the 343	
absence of any genetic differences (rW). The distribution of rW values reflects the extent 344	
of vertical pleiotropy, and the overall pattern of rW values (i.e., whether there are isolated 345	
clusters of highly correlated traits versus a densely interconnected network of traits) 346	
reflects the modularity of the underlying biological system. These within-strain 347	
correlations are estimated with extremely high precision because of our large sample size 348	
of hundreds of thousands of clonal cells (800 per each of 374 strains).  349	

Most pairs of single-cell morphological traits are not strongly correlated across 350	
clonal cells (Fig 2A). Median rW is < 0.1, and 74% of pairs have rW < 0.2. Even if we 351	
allow for nonlinear correlations by transforming data using a nonparametric model that 352	
finds the fixed point of maximal correlation [70], rW is less than 0.2 for roughly 65% of 353	
pairs. These observations suggest that most of the morphological traits we surveyed are 354	
not inherently related; i.e. for any individual cell, the value of one trait does not predict 355	
well the values of most other traits.  356	

Nonetheless, the distribution of rW has a prominent right tail (Fig 2A) indicating 357	
that some morphological features are strongly correlated across clonal cells. These 358	
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correlated features are more likely to be influenced by pleiotropic QTL. Among pairs 359	
represented by this right tail (specifically, those with rW > 0.2), 78% consist of traits that 360	
share at least one QTL influence; the same is true for only 40% of pairs with rW < 0.2. 361	
Further, the number of pleiotropic QTL influencing both traits in a pair correlates with 362	
that pair’s rW (Pearson’s r = 0.52). This result suggests that some of the pleiotropy we 363	
observe is vertical and results from inherent correlations that cause genetic perturbations 364	
to one morphological trait to have consequences on another.  365	

Next, we asked how many pleiotropic QTL act exclusively via vertical 366	
pleiotropy—that is, how many QTL, identified across genotypes, are only associated with 367	
traits that correlate highly within genotypes. Of the 35 pleiotropic QTL that we 368	
examined, 11 exclusively influence traits with rW > 0.2 (Fig 2B). For example, a QTL on 369	
chromosome 10 influences a single pair of traits – the area of the nucleus and the length 370	
of the nucleus in large-budded cells – with an rW of 0.9, suggesting that the aspect ratio 371	
of the nucleus is constrained by vertical pleiotropy (Fig 2B). Another QTL on 372	
chromosome 16 exclusively influences traits corresponding to unbudded cells, all with rW 373	
> 0.4 (Fig 2B). Excluding these 11 QTL, nearly all (21) of the remaining 24 QTL have a 374	
median rW for the pairs of traits they influence that is higher than the median rW given by 375	
all possible pairs of traits (Fig 2C, compare All QTL to All Pairs). In sum, pairs of traits 376	
with stronger correlations across clones (higher rW) are disproportionately represented 377	
among those influenced by pleiotropic QTL, suggesting that vertical pleiotropy drives a 378	
large portion of the pleiotropy we detect.  379	

Next, we investigated the organization of the biological system underlying cell 380	
morphology by using network analysis to move beyond pairwise comparisons and ask if 381	
morphological traits tend to be clustered into modules. Traits with higher rW do indeed 382	
tend to group into clusters in networks in which the single-cell morphological traits are 383	
nodes and the rW magnitudes are edge weights (Fig 2D shows the network for traits of 384	
large-budded cells). This need not have been the case; single pairs of traits with high rW 385	
could have been distributed throughout the network without necessarily being clustered 386	
near other high rW pairs. Instead, networks representing single-cell morphological 387	
features demonstrate more clustering than do random networks drawn from the same 388	
values of rW (Fig 2E; for corresponding figures from unbudded and small-budded trait 389	
networks, see Fig S4). This observation might indicate that morphological phenotypes 390	
have a modular organization, whereby phenotypes within a module exert influence on 391	
one another, but exert less influence on phenotypes from other modules. However, this 392	
observation could also result from human bias when enumerating phenotypes that can be 393	
measured, in the sense that phenotypes that bridge modules might somehow be absent 394	
from the data set. The comprehensive nature of CalMorph diminishes this concern. A 395	
related concern is that apparent modules are formed by trivially related phenotypes, such 396	
as the radius and diameter of a circular object, but we do not find such trivial 397	
relationships among the CalMorph phenotypes. Even a high correlation between the 398	
length and area of the nucleus, as noted above, implies a constraint on nuclear aspect 399	
ratio.  400	

Some pleiotropic QTL tend to influence traits that are clustered in these networks. 401	
Even when we focus on the 24 pleiotropic QTL that do not exclusively influence traits 402	
with high rW, we find that more influence traits with higher weighted clustering 403	
coefficients (wcc) than expected given the distribution of wcc across all traits (Fig 2F, 404	
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compare All QTL to All Pairs). For example, the QTL containing the HOF1 gene has a 405	
slight tendency to influence traits with higher than average wcc (Fig 2D: purple nodes; 406	
Fig 2F: purple points).  407	

Together, these observations (Fig 2) suggest that natural genetic variation 408	
contributing to the single-cell morphological features we measured often acts via vertical 409	
pleiotropy. In other words, correlations among morphological features that are present in 410	
the absence of genetic variation underlie a large portion of pleiotropic genetic influences 411	
on single cell morphology. Still, there are hints of another mechanism at play. Some QTL 412	
tend to influence traits that are among the most weakly clustered in the correlation 413	
network (Fig 2F). Moreover, most of the pleiotropic QTL we surveyed (24/35) each 414	
influence at least 2 traits with rW < 0.2. To investigate how often pleiotropy is not 415	
predicted by the degree to which morphological features correlate in the absence of 416	
genetic variation, in the next section we compare trait correlations present across clones 417	
(rW) to those present between genetically diverse strains (rB).  418	
 419	
Many traits are more strongly correlated across strains than they are across clones  420	

When genetic changes that perturb one trait have collateral effects on another, we 421	
expect the way traits correlate across genetically diverse strains to reflect trait 422	
correlations across clones (i.e. rB = rW). When this condition is met, pleiotropy can be 423	
viewed as an expected consequence of inherent relationships between traits, i.e. vertical 424	
pleiotropy. On the other hand, if a QTL influences two traits that do not correlate across 425	
clones, it may cause these traits to correlate across strains in which this QTL is 426	
segregating. In this case, we expect rB will be greater than rW, suggesting horizontal 427	
pleiotropy.  428	

After correcting for multiple hypothesis testing, rB significantly exceeds rW in 429	
24% of all trait pairs, and 41% of pairs in which at least one pleiotropic QTL influences 430	
both traits (Fig 3; left panel; 41% of points are above the envelope, which represents a 431	
Bonferroni corrected significance threshold of p < 0.01). In the majority of cases in which 432	
rB significantly differs from rW, rB is greater than rW (Fig 3; left panel; 83% of points 433	
outside the envelope are above it). The magnitude of the increase in rB vs. rW tends to 434	
scale with the number of pleiotropic QTL that jointly influence both traits in a pair (Fig 435	
3; left panel; colors get warmer farther above the envelope). These observations are 436	
consistent with the hypothesis that QTL acting via horizontal pleiotropy increase rB 437	
relative to rW. 438	

However, horizontal pleiotropy is not the only reason traits may correlate 439	
differently across strains versus across clones. We find significant deviations in rB 440	
relative to rW in 14% of pairs for which no pleiotropic QTL influence both traits, (Fig 3; 441	
right panel). This observation may suggest the presence of pleiotropic genetic variants 442	
that we did not have statistical power to detect with an FDR of 5% in our QTL screen. 443	
But an alternate explanation for the observed increases in rB over rW is that perhaps we 444	
sometimes underestimate rW.  445	

One reason rW could be underestimated is that single-cell measurements are 446	
noisier than group-level averages. To test this possibility, we randomly assigned 447	
individual cells to groups (pseudo-strains) having the same number of cells as the actual 448	
strains, and found that in these permuted data, rB and rW never significantly differ (Fig 3; 449	
insets). Because detection of rW was not underpowered relative to rB, we conclude that 450	

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700716doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700716


	

	

measurement noise does not meaningfully obscure rW. Another reason rW could be 451	
underestimated is if trait correlations across strains are more linear than those across 452	
clones. To test this possibility, for every pair of traits we transformed the single-cell trait 453	
measurements using a nonparametric model that finds their maximal correlation [70]. 454	
This transformation abrogated significant differences in rB relative to rW for fewer than 455	
5% of affected trait pairs. Another reason rW might be less than rB is if there tends to be 456	
less phenotypic variation within strains than between strains. Contrary to this prediction, 457	
every morphological trait we surveyed varies more within strains than between strains. A 458	
final reason rW could be poorly estimated is if non-genetic heterogeneity across different 459	
subpopulations within clonal populations causes variation in rW. Therefore, next we 460	
investigated whether the relationship between single-cell features varies for clonal cells 461	
in different stages of the cell-division cycle.   462	
 463	
Inferring a cell’s progress through division from fixed cell images 464	

Pairs of traits for which rB is strong whereas rW is not should reflect horizontal 465	
pleiotropy, but a closer examination of some of these pairs revealed traits that should 466	
correlate due to simple geometric constraints. For example, cell size and the width of the 467	
bud neck should correlate due to the constraint that, even at its maximum, bud neck width 468	
cannot be larger than the diameter of the cell. When measured in small-budded cells, 469	
these two traits are correlated across yeast strains (rB = 0.40) but are significantly less 470	
correlated across clones (rW = 0.15). Given the simple geometric constraint coupling the 471	
width of the bud neck to the cell’s size, why is there a discrepancy between rB and rW? 472	
We reasoned that this discrepancy exists because the correlation between cell size and 473	
neck width is disrupted during particular moments of cell division; e.g. the width of the 474	
bud neck starts small even for large cells (Fig 4A; cell micrographs outlined in blue show 475	
two cells in the progress of budding). If the relationship between morphological features 476	
varies during cell division, rW may represent a poor summary statistic. 477	

How often does the relationship between morphological traits change during cell 478	
division? Our single cell measurements are primed to address this question: we fixed 479	
cells during exponential growth and imaged hundreds of thousands of single cells, 480	
thereby capturing the full spectrum of morphologies as cells divide. A remaining 481	
challenge is sorting these images according to progress through cell division, and then re-482	
measuring the correlation between morphological features within narrow windows along 483	
that progression.  484	

We performed this sorting using the Wishbone algorithm [71]. This algorithm 485	
extracts developmental trajectories from high-dimensional phenotype data (typically 486	
single-cell transcriptome data). We applied Wishbone separately to cells belonging to 487	
each of the three cell types defined by morphometric analysis (unbudded, small-budded, 488	
and large-budded cells). The trends describing how morphological features vary across 489	
Wishbone-defined cell-division trajectories are consistent with previous observations of 490	
how morphology changes in as yeast cells divide [72,73] (Fig 4A; line plots). For 491	
example, Wishbone sorts fixed-cell images in such a way that cell area increases 492	
throughout the course of cell division (Fig4A; upper left panel), and nuclear elongation 493	
occurs just before nuclear division (Fig4A; lower left panel). These trajectories also 494	
match our own observations of how morphological features change as live cells divide, 495	
which we tracked by imaging at 1-minute intervals one of the 374 progeny strains that we 496	
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had engineered to express a fluorescently tagged nuclear protein (HTB2-GFP) (Fig 4A; 497	
micrographs). We chose this particular strain because it does not deviate from the average 498	
morphology of all 374 recombinants by more than one standard deviation for any of the 499	
phenotypes we measure. 500	

To further validate Wishbone’s performance, we asked whether it could 501	
reconstruct the time series of live-cell images from the HTB2-GFP strain. We obtained 502	
time series for 78 single dividing cells, each imaged over at least 20 timepoints. 503	
Quantifying morphological phenotypes from live-cell images in a high-throughput 504	
fashion proved difficult because the morphometric software was optimized for fixed-cell 505	
images and as cells grow and bud, the cells and their nuclei can move out of the focal 506	
plane. Also, although we used short exposure times when imaging GFP fluorescence, 507	
there are concerns about photo-toxicity and associated growth and morphology defects 508	
[74]. For these reasons, we expect Wishbone to perform better on fixed-cell images than 509	
on time series of live cell images. Still, Wishbone’s cell-division trajectories recapitulate 510	
the time course. When we align time series data across live cells by centering on each 511	
cell’s average predicted progress through division, Spearman’s r is 0.65, 0.91, and 0.77 512	
for time series corresponding to each of the three cell types (Fig 4B; see Fig S5 for 513	
recapitulation of 78 individual time series). These correlations are substantially higher 514	
than those obtained by repeating the merging procedure after randomly permuting each 515	
time series (corresponding Spearman’s r of 0.42, 0.43. and 0.56). These observations 516	
suggest that Wishbone is effective at properly assigning single-cell images to their 517	
position in the cell cycle. 518	

 519	
Cell cycle state can influence the relationship between morphological features  520	

To identify cases where significant differences in rB vs. rW might result because 521	
rW is sensitive to cell-cycle state, we first assigned each imaged yeast cell from the QTL-522	
mapping population to one of 16 equal-sized bins based on Wishbone’s estimation of 523	
how far that cell had progressed through division. Because we did this separately for each 524	
of the previously defined cell stages (unbudded, small-budded, and large-budded), this 525	
additional binning finely partitions cell division into 48 (16 x 3) stages. To hold genotype 526	
representation constant across each of the 48 bins, we performed binning separately for 527	
each of the 374 mapping-family strains, then merged like bins across strains. We then 528	
performed correlation partitioning on each bin separately.  529	

Binning cells by cell-cycle state typically decreased the amount of phenotypic 530	
variation per bin, which we expect in turn to obscure the correlation between traits. 531	
Consider an extreme example: if there is no phenotypic variation remaining for a given 532	
trait, it cannot covary with any other traits. Indeed, for most pairs of traits, the binning 533	
procedure either decreases rW or does not have a dramatic effect on it; decreases in rW are 534	
especially evident for trait pairs where variation of at least one of the traits shows a 535	
relatively large decrease upon binning (Fig 4C). However, for some pairs of traits, 536	
despite the decrease in phenotypic variation for at least one trait, the correlation between 537	
traits improves upon binning. For example, binning by cell division increases the 538	
correlation between cell size and the width of the bud neck (Fig 4D; leftmost plot) such 539	
that it approaches rB. This increased correlation is consistent with our hypothesis that the 540	
process of cell division was obscuring the dependency of bud neck width on cell size. 541	
Examining more pairs of traits for which binning tends to increase rW (Fig 4C; red, 542	
orange, and yellow points) reveals additional cases where the process of cell division 543	
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decouples traits that are otherwise correlated, and where binning reveals the underlying 544	
correlation (Fig 4D; leftmost three plots). 545	

Despite the evidence that cell asynchrony alters some trait correlations, many 546	
cases remain where heterogeneity in cell-cycle state does not explain the observed 547	
discrepancy between rW and rB (Fig 4D; rightmost three plots). We previously 548	
demonstrated that rB significantly exceeds rW in 24% of all trait pairs (1389/5645) (Fig 549	
3). For almost half of these pairs (689 pairs), binning by cell division does not resolve the 550	
discrepancy between rB and rW to any extent; in other words, rW does not increase in any 551	
of the 16 bins. For an additional 193 pairs, binning by cell division resolves the 552	
discrepancy by at most 5% in any bin. These results imply that cell-cycle heterogeneity 553	
does not cause the discrepancy between rW and rB in the majority of cases, and that 554	
elevation of rB over rW is best explained by QTL demonstrating horizontal pleiotropy.  555	
 556	
Many QTL demonstrate horizontal pleiotropy 557	

To test horizontal pleiotropy further, we focused on the 24 QTL each found to 558	
influence at least 2 traits with rW < 0.2 (pleiotropic QTL not included in Fig 2B). To test 559	
whether these pleiotropic QTL cause increases in rB relative to rW, we divided our yeast 560	
strains into sets in which a given QTL is not segregating, then re-measured the difference 561	
between rB and rW. More specifically, for each QTL, we split the 374 phenotyped yeast 562	
strains into two groups based on whether they inherited the wine or the oak parent’s allele 563	
at the genotyped marker closest to the estimated QTL location. Then we repeated 564	
correlation partitioning on each subset of strains and compared the results to those 565	
obtained from the complete set. For each QTL, we focused on trait pairs in which: (1) 566	
both traits are affected by this QTL, and (2) rB is significantly greater than rW. Across all 567	
such pairs, median rB tends to decrease upon eliminating allelic variation at the marker 568	
nearest the QTL (Fig 5A). No similar reduction in rB is observed when we focus on pairs 569	
of traits that are not affected by each QTL (Fig 5A) and no similar reduction is observed 570	
in rW (median reduction in rW is 0.0001). 571	

There appear to be two ways in which a QTL may affect rB. In some cases, 572	
eliminating genetic variation at the marker nearest a QTL decreases rB in both resulting 573	
subpopulations. Such cases are consistent with a straightforward scenario in which 574	
horizontal pleiotropy results when a QTL that influences two or more traits (that are 575	
otherwise weakly correlated) is segregating in a population (Fig 5B; top row). In other 576	
cases, eliminating allelic variation at a QTL site decreases rB in only one of the two 577	
resulting subpopulations (i.e. the subpopulation possessing either the oak or the wine 578	
allele). This observation demonstrates that horizontal pleiotropy can emerge by virtue of 579	
a QTL allele strengthening a correlation between two traits so that genetic variation 580	
affecting one trait is more likely to affect the other when that allele is present [76,77] (Fig 581	
5B; bottom row).   582	

How many cases where rB significantly exceeds rW can be explained, to some 583	
extent, by horizontal pleiotropy (i.e. a QTL increasing the between-genotype 584	
correlation)? For every trait pair where rB significantly exceeds rW and at least one QTL 585	
influences both traits in the pair (1153 pairs total), eliminating allelic variation at the 586	
marker nearest at least one of the shared QTL causes rB to decrease in one or both of the 587	
resulting subpopulations (Fig 5C: solid black line in rightmost plot). About 60% of these 588	
decreases affect both subpopulations (e.g. Fig 5B; top row) and 40% affect only one 589	
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subpopulation (e.g. Fig 5B; bottom row). These decreases in rB appear to resolve the 590	
discrepancies in rB vs. rW more often and to a greater extent than does accounting for 591	
cell-cycle heterogeneity (Fig 5C; leftmost plot). Some QTL have larger impacts on rB 592	
than do others (Fig 5C). Eliminating allelic variation near a QTL on chromosome 13 593	
decreases rB in the largest number of traits pairs (681). Subtracting the influence of a 594	
QTL on chromosome 15 decreases rB to the greatest extent; the average decrease across 595	
357 affected trait pairs is 0.07. Together these observations suggest: (1) many QTL 596	
demonstrate horizontal pleiotropy (Fig 5A), (2) there are at least two ways for horizontal 597	
pleiotropy to emerge (Fig 5B), and (3) horizontal pleiotropy is a major factor driving 598	
increases in rB over rW in this study (Fig 5C).  599	
 600	
Spontaneous mutations alter the relationships between morphological features 601	

Our finding that some QTL alleles appear to strengthen correlations between 602	
otherwise weakly correlated traits (Fig 5B; lower panel) lends credence to the idea that 603	
the relationships between phenotypes, and thus the extent of phenotypic modularity (or 604	
integration), are mutable traits [78]. This finding has implications for evolutionary 605	
medicine, in particular evolutionary traps, e.g. strategies to contain microbial populations 606	
by encouraging them to evolve resistance to one treatment so that they become 607	
susceptible to another [39-41]. These traps will fail if targeted correlations can be broken 608	
by mutations. To test whether spontaneous mutations can alter trait correlations, we 609	
analyzed the cell-morphology phenotypes of a collection of yeast mutation-accumulation 610	
(MA) lines [54]. These MA lines were derived from repeated passaging through 611	
bottlenecks, which dramatically reduced the efficiency of selection and thereby allowed 612	
retention of the natural spectrum of mutations irrespective of effect on fitness [55]. We 613	
previously imaged these lines in high throughput (>1000 clonal cells imaged per each of 614	
94 lines) [50].  615	

Because MA lines contain private mutations unique to each strain, they are not 616	
amenable to QTL mapping and between-strain trait correlations have less meaning. 617	
Instead, we focused on within-strain correlations, which we expected to be consistent 618	
across strains because of the limited number of mutations distinguishing the strains (an 619	
average of 4 single-nucleotide mutations per line [55]), except if a rare mutation does 620	
indeed alter the correlation. To determine if such correlation-altering mutations exist, we 621	
calculated within-strain correlations for each strain separately and asked, for each trait 622	
pair, whether any strains had extreme correlations relative to the other strains. For most 623	
trait pairs, the MA lines trait correlations did not vary much from each other or from that 624	
of the ancestor strain (Fig 6). However, in several instances, we observed a trait-pair 625	
correlation dramatically outside the range of the other trait pairs and more than four 626	
standard deviations from the mean (Fig 6A). Some mutations appear to influence many 627	
trait-trait relationships (mutations found in blue- and purple-colored strains in Fig 6B & 628	
C), whereas others influence fewer (mutations found in magenta-colored strain in Fig 629	
6C).  630	

Given that in this small sampling of spontaneous mutations, we found several that 631	
appear to alter the relationship between morphological features, we think such mutations 632	
are common enough to merit further consideration in evolutionary models. The mutations 633	
in the outlier lines provide candidate correlation-altering mutations for future mechanistic 634	
studies as well. 635	
 636	
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Discussion:  637	
Although evolutionary biologists and medical geneticists alike appreciate that 638	

organismal traits can rarely be understood in isolation, the extent and implications of 639	
pleiotropy have remained difficult to assess. One approach to measuring pleiotropy has 640	
been to count phenotypes influenced by individual genetic loci [17,33,34]. For example, 641	
the median number of skeletal traits affected per QTL in a mouse cross was six (out of 70 642	
traits measured); this small median fraction of traits suggests that variation in skeletal 643	
morphology is modular [16,30]. Of course, for a count of traits to be meaningful the full 644	
trait list must be comprehensive, and correlations between traits must be properly 645	
accounted for [17,33,34]. We aimed for comprehensiveness in a very similar way to the 646	
studies of mouse skeletal traits, by systematic phenotyping of a large number of 647	
morphological traits. However, we addressed the need for a principled approach to 648	
separating inherent trait correlations from those induced by genetic differences in a new 649	
way: by extending the analysis to include within-genotype correlations and thereby 650	
enabling an operational definition of the distinction between vertical and horizontal 651	
pleiotropy. 652	

Our comprehensive analysis of how thousands of trait pairs co-vary within and 653	
between mapping strains yields an unprecedently quantitative and nuanced view of 654	
pleiotropy. We found support for modularity, not only in the striking correspondence 655	
between our median number of traits affected per QTL (six out of 167) and that found for 656	
mouse skeletal traits [16,30], but also in the way that within-genotype correlations 657	
grouped traits into relatively isolated clusters (Fig 2). We also found ample evidence of 658	
horizontal pleiotropy layered on top of that modularity, with many cases of between-659	
genotype trait correlations that exceeded within-genotype correlations (Fig 3). Our results 660	
do not speak directly to whether modularity results from selection against pleiotropy in 661	
nature, because we sampled only two natural genetic backgrounds (wine and oak). 662	
However, future work comparing MA lines to a larger collection of natural isolates might 663	
help answer questions about the extent to which selection purges pleiotropic mutations. 664	

Our partitioning of between-strain (genetic) and within-strain (environmental) 665	
correlations relates to another approach to understanding trait interdependencies, the 666	
estimation of the so-called G matrix. This genetic variance-covariance matrix 667	
summarizes the joint pattern of heritable variation in a population of the traits that 668	
compose its rows and columns, and is central to understanding how trait correlations 669	
constrain evolution. The G matrix arises in the multivariate breeder’s equation, which 670	
describes the responses to selection of correlated traits [79]. If breeding is the goal, the 671	
distinction between vertical and horizontal pleiotropy is not so important, because both 672	
can impede selection. Indeed, any philosophical concern about what constitutes a 673	
biologically meaningful trait is irrelevant to the breeder, who actually cares about 674	
particular traits (e.g., milk yield and fat content). 675	

G matrices are not only relevant to breeders, but to evolutionary biologists as 676	
well, and it is worthwhile to place our results into this context. A major evolutionary 677	
question in the G-matrix literature is whether the G matrix itself can evolve. In other 678	
words, do short-term responses to selection (as captured in the breeder’s equation) predict 679	
long-term responses or do constraints shift through time, perhaps in a way that facilitates 680	
(or is part of) adaptation [80]? Our results with MA lines add to evidence that the G 681	
matrix readily changes [81], in that individual mutations have major effects on particular 682	
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trait correlations (e.g. Fig 6A). Our QTL-mapping results also support this view, in that 683	
some cases of horizontal pleiotropy appear to be caused by alleles that alter trait 684	
correlations (e.g. Fig 5B; bottom panel). 685	

Another prominent question in the G-matrix literature is the extent to which the P 686	
matrix, which includes all sources of phenotypic variation and covariation, predicts the G 687	
matrix, which only includes additive genetic effects (i.e., those that respond to selection). 688	
If P predicts G well, as proposed by Cheverud [82], then inference of selection responses 689	
from patterns of trait covariation in a population would suffice when genetic analysis 690	
would be difficult or costly. Our results do not speak directly to this question, because we 691	
did not estimate G itself and instead estimated genetic correlations that include non-692	
additive effects. However, our results are informative from another angle, which is the 693	
comparison of genetic and environmental correlations. As we showed (Fig 3), although 694	
there are cases in which the environmental and genetic correlations have different signs, 695	
the environmental correlations do tend to match the signs of the genetic correlations and 696	
predict their magnitudes to some extent as well, consistent with similarity between P and 697	
G. Future experiments using clones embedded in a more complicated crossing scheme 698	
could properly partition P into G, E, and the non-additive genetic components, to address 699	
Cheverud’s conjecture [82] more directly. There are only a few reports of comparisons of 700	
E matrices [83], but we encourage increased attention to the E matrix to understand 701	
inherent trait correlations and to contextualize G in a way that diminishes concerns about 702	
which traits have been granted status as its rows and columns.  703	

A major conclusion of our work is that context is crucial. We have shown that 704	
trait correlations change through the cell-division cycle and in different genetic 705	
backgrounds. It is likely that macroenvironmental differences alter trait correlations as 706	
well [84]. These results support the idea that predicting the mapping from genotype to 707	
phenotype requires a paradigm shift [85], away from merely mapping the relationships 708	
between traits and toward unfurling the range of contexts across which those 709	
relationships persist. Future work in this direction will not only advance understanding of 710	
the evolution of complex traits, but will have practical benefits. For example, our 711	
approach demonstrates a potentially fruitful way to consider the design of evolutionary 712	
traps: using within-genotype correlations to identify particularly immutable inherent 713	
correlations between traits.   714	
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Materials and Methods: 726	
Measuring the morphology of single yeast cells 727	
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Recombinant yeast strains were generated and genotyped at 225 markers in a previous 728	
study [53,59]; each strain is a homothallic diploid. We prepared yeast cells from these 729	
strains for microscopy using published methods [49-51,86]. Briefly, yeast strains were 730	
grown in minimal media with 0.08% glucose in 96-well plates [87], harvested during 731	
exponential phase, fixed in 4% paraformaldehyde, stained for cell-surface manno-protein 732	
(with FITC-concanavalin A) and nuclear DNA (with DAPI), sonicated, mounted on 96-733	
well glass-bottom microscopy plates, and imaged with a Nikon Eclipse TE-2000E 734	
epifluorescence automated microscope using a 40× objective and appropriate 735	
fluorescence filters. Three biological replicate experiments were performed, typically 736	
yielding a total of between 500 to 1,000 imaged cells per strain (Fig S2).  737	
 738	
Statistical analysis and processing of cell image data 739	
Cell image processing was performed similarly to previous studies [49-51,86]. Imaged 740	
cells were analyzed for quantitative morphological traits using the CalMorph software 741	
package [52], which reports on hundreds of morphological features that are each specific 742	
to one of three cell types: unbudded, small-budded, and large-budded cells. We excluded 743	
phenotypes for which >10% of cells had missing values, leaving 167 morphological 744	
features. Any cell that was not scored for all features pertaining to its type was 745	
eliminated. Each morphological trait was transformed via a Box-Cox transformation of 746	
the raw data with the value of lambda that makes the residuals of a linear regression of 747	
phenotype on strain most normal using the EnvStats package in R [88]. Internal controls 748	
(several wells representing the wine and oak parents) were present on every 96-well plate 749	
and were used to correct for effects on phenotypic variation that resulted from differences 750	
among replicate experiments, such as differences in the brightness of the cell stain. We 751	
calculated the mid-parent value for each phenotype on every plate, then calculated the 752	
average mid-parent value across all plates. For each phenotype, we found the difference 753	
between the plate-specific mid-parent value and the average mid-parent value across all 754	
plates. Then we subtracted this difference from each plate for the corresponding 755	
phenotype. After correction, any cell with a morphological feature that deviated from the 756	
average by more than 5 standard deviations was then eliminated, as investigation of such 757	
cells typically revealed these were CalMorph miscalls or cellular debris.  758	
 759	
QTL mapping 760	
QTL interval mapping was performed similarly to previous studies [62] using the R/qtl 761	
package [63]. We performed a QTL scan using the function “scanone”, which finds at 762	
most one QTL per chromosome. Yeast strains, which are homozygous diploids, were 763	
modeled as haploids and QTL models were fit using Haley-Knott regression. As in 764	
previous work [62], when comparing QTL across traits, QTL within 30 cM on the same 765	
chromosome were counted as the same QTL. In some cases, we detected a QTL in 766	
between two others on the same chromosome and within 30 cM of both. In these cases, 767	
we made decisions about the total number of unique QTL present by using our best 768	
judgement and considering factors such as the proximity between QTL. A summary of all 769	
significant QTL effects, including their chromosomal locations in cM and which QTL on 770	
the same chromosome we considered unique, is provided in Table S1 (also see Fig 1A). 771	
QTL effects were counted as significant when they were stronger than any QTL effect 772	
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detected in 100 randomly permutated datasets, allowing for 5% false positives. 773	
Permutations were performed separately for each trait. 774	
 775	
Candidate gene swaps 776	
All yeast transformations were performed using the lithium acetate [89] and delitto 777	
perfetto [64] methods. For each candidate gene, the gene was first deleted from haploid 778	
variants of both the wine and oak parental strains and replaced with a selectable marker, 779	
the yeast gene encoding orotidine-5’-phosphate decarboxylase (URA3). Gene knockouts 780	
were confirmed by growth on plates lacking uracil and DNA sequencing of the affected 781	
region. Next, the URA3 selectable marker was replaced with the other parent’s version of 782	
the candidate gene. These candidate gene ‘swaps’ were selected by growth on 5-783	
Fluoroorotic acid and confirmed by sequencing of the affected region. For each candidate 784	
gene, we swapped a region containing the coding sequence plus 5 – 750 bp up and 785	
downstream. We used the following regions of homology to define the boundaries of 786	
each swapped segment:  787	
 788	
~300bp upstream of PXL1: TTATAATTGTGGTTTAGCGTTTCATAGTCGC 789	
~300bp downstream of PXL1: CCTTATTCTCTATTCTTAGGCTCCTGTTCC 790	
~5bp upstream of HOF1: GAAAGAATGAGCTACAGTTATGAAGCTTG 791	
~ 300bp downstream of HOF1: GTATTCGTAACAAGTGACTCTAATGATAT 792	
~ 750bp upstream of RAS1: CGACTAAAGGAATTATACCATCATGCATC 793	
~ 300bp downstream of RAS1: GCATTTCTAAAAACAGAGCTTTTGCCG 794	
 795	
These regions of homology were chosen by searching for regions of higher GC content 796	
nearby the start and end of each gene’s coding sequence. In addition, we attempted to 797	
swap the wine and oak parents’ versions of the GPA1 gene on chromosome 8. Despite 798	
trying various regions of homology, we could not successfully replace GPA1 with the 799	
URA3 selectable marker in the oak parent. GPA1 is known to be essential in some genetic 800	
backgrounds [90]. 801	
 802	
Though the recombinant strains we studied are homothallic diploids, the strains in Fig 1B 803	
(both the parental strains and the strains possessing the gene swaps) are haploid. Because 804	
the analyses in Fig 1B compare pairs of strains (e.g. the oak haploid parent to the wine 805	
haploid parent, or the wine haploid parent to the wine haploid parent possessing the oak 806	
allele of PXL1), we only considered experiments where both strains in the pair were 807	
imaged in the same replicate experiment. To account for differences among replicate 808	
experiments, for each phenotype, we subtracted the value in one strain from the value in 809	
the other to calculate the phenotypic difference between strains in that replicate 810	
experiment; the reported value is the average of these differences across replicate 811	
experiments (Table S2, Fig 1B).  812	
 813	
Calculation of correlation coefficients 814	

We used WABA II as implemented in the multilevel package in R [69] to 815	
calculate cell-level (rW) and strain-level (rB) Pearson correlation coefficients for each pair 816	
of traits. We used an r-to-z transformation to determine whether differences in rB vs. rW 817	
are significant at a Bonferroni corrected p-value of 0.01 (this is a z-score cutoff of 4.63, 818	
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given 5645 pairs of traits were tested). To assess whether correlations across single cells 819	
generally result in different values than correlations across group-level averages, we 820	
assigned yeast cells to groups (pseudo-strains) randomly, maintaining the same number 821	
of cells per strain as in the actual data. To assess whether results would differ if we 822	
allowed for non-linear correlations, we transformed the single-cell data using a 823	
nonparametric model that finds the fixed point of maximal correlation, implemented in 824	
the R package acepack [70]. To assess whether results from WABA differed from those 825	
obtained using a standard quantitative genetics model (Fig S3), we implemented the latter 826	
using the nlme package in R [91] to specify a mixed-effects model with cells nested 827	
within strains. We specified a covariance structure that allows covariance between two 828	
traits but no covariance between cells or between strains. We used this model to calculate 829	
the environmental and genetic correlations for 350 pairs of randomly chosen traits.  830	
 831	
Live imaging single cells as they divide 832	
For live imaging the morphology of dividing yeast cells, we chose one of the 833	
recombinant yeast strains, F2_292. This strain was chosen because it does not deviate 834	
from the average morphology of all 374 recombinants by more than one standard 835	
deviation for any of the phenotypes we measured. F2_292 was transformed to express a 836	
fusion protein of GFP and a nuclear protein (histone H2B encoded by HTB2). Two 837	
independent transformants were imaged in the GFP channel (for nuclei) and in brightfield 838	
(for cell outlines). We prepared live cells for imaging following published methods 839	
[87,92,93], in a similar way to that described above, except cells were neither fixed nor 840	
stained. Cells were taken during mid-log phase growth, seeded in 96-well glass bottom 841	
microscopy plates containing minimal media with 0.08% glucose, and imaged over a 842	
period of 3 hours. In each of four replicate experiments, cells were imaged either every 843	
minute, every 90 seconds, or every 2 minutes. We used short exposure times (afforded by 844	
the highly abundant HTB2-GFP) and took only a single image per well per timepoint to 845	
reduce photo-toxicity. We processed images with CalMorph then matched cells across 846	
timepoints by their centroid locations in the imaging fields. Overall we obtained time 847	
series for 78 cells that each: (1) were longer than 20 timepoints, (2) contained no gaps 848	
where the cell was not phenotyped for many consecutive timepoints, and (3) contained no 849	
images that appeared to be very out of focus potentially resulting in misestimation of 850	
phenotype values. Because CalMorph divides cells into unbudded, small-budded and 851	
large-budded stages, these 78 time series are also divided this way (11, 23, and 44 cells, 852	
respectively). 853	
 854	
We used the Wishbone algorithm implemented in python [71] to estimate progression 855	
through the cell-division cycle. Wishbone recapitulates each of these 78 time series (Fig 856	
S5) with Spearman correlations between the actual and inferred image orders that average 857	
0.42, 0.85, 0.40 across all unbudded, small-budded or large-budded series, respectively. 858	
The lower correlations between Wishbone’s predicted progress through division and time 859	
for the unbudded and large-budded cells may result because each time series captured 860	
only a part of the cell-division cycle and, during some stretches in the cycle, there are 861	
fewer morphological changes taking place. To estimate Wishbone’s accuracy across a 862	
longer stretch of time, we merged the Wishbone predictions within the classes of 863	
unbudded, small-budded or large-budded cell time series. To do so, we had to contend 864	
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with the fact that the first timepoint for each imaged cell often represents a different 865	
moment in division. For example, some time series for unbudded cells start from an 866	
image that is already far along the division process (Fig S5; values close to 1 on the 867	
vertical axis) while others start from a cell image that has just begun its division cycle 868	
(Fig S5; values close to zero on the vertical axis). Therefore, we aligned the time series 869	
by subtracting from each the difference between Wishbone’s estimate of the average 870	
percent progress through division and the average time elapsed. 871	
 872	
Note that, because this merging procedure utilized information from Wishbone, it 873	
imposes a correlation between time and Wishbone’s estimated progress through division. 874	
To reduce the impact of this induced correlation, we eliminated the cell images in the 875	
middle of each time series, which represent the images that are most affected by this 876	
induced correlation. Eliminating 25% or 50% of cell images in this way reduced the 877	
correlations by at most 0.05, suggesting these correlations are not driven by our merging 878	
procedure. 879	
 880	
Assigning cells to a bin based on progression through cell division 881	
We used Wishbone to estimate how far each fixed-cell image had progressed through cell 882	
division. Wishbone software requires input about which “start” cell has features 883	
resembling those present at the start of the cell cycle. To identify such features, we used 884	
the data from the live-imaged cell time series. We plotted how single-cell features change 885	
over the course of live imaging, and chose several features that correlate best with 886	
progress through cell division (e.g. cell size, bud size, location of the nucleus).  887	
 888	
Using Wishbone’s estimation of how far each fixed cell had progressed through division, 889	
we assigned each cell to one of 16 equal-sized bins. We did this separately for each of the 890	
374 yeast strains, then merged like bins across strains, such that genetic diversity was 891	
constant across each of the final 16 bins. We obtained very similar results to those 892	
reported in Figs 4C, 4D, and 5C when we used 8 instead of 16 bins. The names of the 893	
traits plotted in Fig 4 represent succinct summaries of single-cell morphologies 894	
quantified using CalMorph [52]. For fuller descriptions of these traits, see the following 895	
trait designations in the CalMorph software manual: Fig 4A upper left: C11.1 in 896	
unbudded cells, C101 in budded cells; Fig 4A lower left: D184 in small-budded cells, 897	
D182 in unbudded and large-budded cells; Fig 4A upper right: C12.2; Fig 4A lower 898	
right: D116; Fig 4C upper left: C101 and C109 in small-budded cells; Fig 4C upper 899	
middle: C11.2 and D132 in small-budded cells; Fig 4C upper right: C105 and C113 in 900	
small-budded cells; Fig 4C lower left: C114 and D145 in large-budded cells; Fig 4C 901	
lower middle: C109 and C126 in large-budded cells; Fig 4C lower right: D14.2 and D169 902	
in large-budded cells.  903	
 904	
Eliminating genetic variation at the marker nearest a QTL 905	
For each of the 24 QTL suspected of horizontal pleiotropy (i.e. pleiotropic QTL not in 906	
Fig 2B), we divided the 374 phenotyped yeast strains into two groups based on whether 907	
they inherited the wine or the oak parent’s allele at the genotyped marker closest to the 908	
QTL. We then performed correlation partitioning separately for each group of strains. 909	
The names of the traits plotted in Fig 5B represent succinct summaries of single-cell 910	
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morphologies quantified using CalMorph. For fuller descriptions of these traits, see the 911	
following trait designations in the CalMorph software manual: upper: D128 and C114 in 912	
large-budded cells; lower: D197 and D17.1 in large-budded cells. 913	
 914	
Quantifying trait correlations within each MA line 915	
We used MA line data from our previous study [50]. Fewer traits were analyzed in that 916	
study than in the current study, such that there were only 3731 pairs of traits to survey, as 917	
opposed to 5645 in the QTL-mapping family. We calculated Pearson correlations 918	
between every pair of traits, separately within each MA line. The names of the traits 919	
plotted in Fig 6A represent succinct summaries of single-cell morphologies quantified 920	
using CalMorph. For fuller descriptions of these traits, see the following trait 921	
designations in the CalMorph software manual: upper left: D185 and D186 in large-922	
budded cells; upper right: C102 and D132 in small-budded cells; lower left: C108 and 923	
D167 in large-budded cells; lower right: D135 and D169 in large-budded cells. 924	
 925	
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Figures: 
 

 
 
Figure 1: Pleiotropic QTL influence yeast single-cell morphology. The vertical axes in all plots represent the 
158 CalMorph morphological traits for which we detect QTL with a genome-wide FDR of 5%. These traits are 
sorted, from top to bottom, based on the difference between the oak and wine parental strains. (A) Of 44 QTL that 
contribute to variation in single-cell morphology, 37 contribute to variation in multiple features. The horizontal 
axis indicates the chromosomal location of each QTL (in cM). Differently shaped points indicate QTL that are 
more than 30 cM apart on the same chromosome. The darkness of a point represents the effect size of a QTL; 
effect sizes range from 0.3% (lightest points) to 18% (darkest points) of the difference between parents. The QTL 
highlighted in pink, green, purple, and orange contribute to 58, 33, 78, or 66 morphological features, respectively. 
(B) Single genes contribute to multiple morphological features. The horizontal axis represents the relative 
phenotypic differences between the wine and oak parents (leftmost column) or one of these strains versus a 
derivative strain that differs in a single gene. The relative phenotypic differences between a pair of strains are 
calculated by scaling each trait to have a mean of 0 and standard deviation of 1 across all individuals in both 
strains, and then subtracting the average value in one strain from that in the other. To control for variation among 
replicate experiments, this scaling was done independently for each replicate experiment in which both strains 
were imaged. Error bars represent 95% confidence intervals inferred from the replicate experiments. The two 
gene replacements shown, PXL1 and HOF1, are respectively located within the QTL highlighted in green and 
purple in panel A. When calculating the difference between strains, we always subtracted the trait values of the 
strain possessing more wine genes from those of the strain possessing more oak genes, such that the effects of the 
wine or oak gene replacements appear in the same direction on all plots.   
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Figure 2: Pairs of traits with high correlation across clones are overrepresented among those influenced by 
pleiotropic QTL. Within-genotype correlations (rW) are calculated for 5645 pairs of morphological traits. (A) 
Histogram showing distribution of rW. (B) This plot displays the 11 of 35 pleiotropic QTL that exclusively 
influence pairs of traits with rW > 0.2. Points represent rW for pairs of traits influenced by a QTL; the shapes of 
these points match those in Fig 1A and distinguish a QTL from others on the same chromosome. (C) Points in 
grey represent rW for all 5645 pairs of traits. Points in black each represent the median rW across pairs of traits 
influenced by one of the 24 pleiotropic QTL not included in panel B. The next four sets of points each display rW 
for pairs of traits influenced by a single QTL corresponding to those highlighted in the same color in Fig 1A. 
Each boxplot shows the median (center line), interquartile range (IQR) (upper and lower hinges), and highest 
value within 1.5 × IQR (whiskers). (D) A force-directed network visualizing how pairs of morphological features 
correlate across clones. Each node represents a single-cell morphological trait measured in large-budded cells. 
The thickness of the line connecting each pair of nodes is proportional to rW. Node position in the network is 
determined using the Fruchterman-Reingold algorithm. Purple nodes correspond to traits influenced by a QTL on 
chromosome 13 containing the HOF1 gene. (E) Cumulative distributions of weighted clustering coefficients 
(wcc) in a network created using measured values of rW (red line) or in 100 permuted networks (grey lines) for 
traits corresponding to large-budded cells. Permutations were performed by sampling rW, without replacement, 
and reassigning each value to a random pair of traits. (F) This panel is similar to panel C, except points represent 
wcc of traits rather than rW of trait pairs, and black points each represent the median wcc across traits influenced 
by one of 24 pleiotropic QTL. 
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Figure 3: Natural genetic variation affects the correlation between morphological features. The absolute 
value of the between-strain correlation (rB), made negative when rB and rW have opposite signs, is plotted against 
the absolute value of the within-strain correlation (rW), for each pair of traits. The plot at left shows pairs of traits 
that share at least one QTL influence. The color of each point represents the number of pleiotropic QTL that 
influence both traits in that pair. The plot at right shows pairs of traits that share no QTL influence. The dashed 
line represents a Bonferroni-corrected significance threshold of p < 0.01. Insets represent the results of correlation 
partitioning performed after randomly assigning individual cells to groups (pseudo-strains) having the same 
numbers of cells as the actual strains.  
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Figure 4: Morphological features vary as cells divide. The morphological features of unbudded (red), small-
budded (blue), and large-budded (purple) cells change as these cells progress through the cell cycle. (A) Variation 
of four traits through the cell cycle. Line plots represent fixed-cell images from all 374 mapping family strains, 
positioned on the horizontal axis based on progression through the cell cycle as calculated by Wishbone [71]. 
Regression lines are smoothed with cubic splines, calculated with the “gam” method in the R package ggplot2 
[75], to depict trends describing how each displayed trait varies across the estimated growth trajectory. The 
displayed trends match those observed in micrographs of live cells progressing through division. Each series of 
micrographs displays a different live cell imaged over several minutes, which are displayed in the lower right 
corner of each micrograph. (B) Centered data for 11, 23, and 44 unbudded, small-budded and large-budded cells, 
respectively, show how Wishbone sorts live cells in a way that recapitulates the actual time series. Each point in 
these plots represents a cell image from a single timepoint. The horizontal axis represents Wishbone’s estimation 
of how far that cell has progressed through division. The vertical axis displays time, as a percentage of the total 
time elapsed and adjusted in a way that controls for every cell having started at a different place in the cell 
division cycle at time zero (see Methods). Trend lines are smooth fits using the “loess” method in the R package 
ggplot [75]. (C) The correlation between some morphological features changes throughout the course of cell 
division. The scatterplot shows how binning influences both the phenotypic correlation (vertical axis) and 
phenotypic variation (horizontal axis) across clones. Each point represents these values for a pair of traits as 
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measured in 1 of 16 bins. The value on the horizontal axis represents whichever trait in each pair had the larger 
decrease in standard deviation, as such decreases are likely to reduce the correlation on the vertical axis. The blue 
line shows a smooth fit by loess regression. Colored points on the scatterplot correspond to bin 5 for each pair of 
traits represented by the line plots in panel D. (D) These line plots show three pairs of traits for which binning 
increases rW such that it approaches rB (leftmost three plots), and three pairs of traits for which rW does not 
approach rB even after binning (rightmost three plots). In each plot, rB is shown as the horizontal green line, rW 
(without binning) is shown as the horizontal purple line, and rW for each bin is shown in black.  
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Figure 5: Many QTL demonstrate horizontal pleiotropy. (A) Eliminating allelic variation at the site of each 
QTL tends to reduce rB. The vertical axis represents how rB changes upon eliminating allelic variation at each 
QTL site. Each point represents the median change in rB for all pairs of traits that are affected or unaffected by 
one of the 24 QTL suspected of horizontal pleiotropy. Boxplots summarize these changes in rB when re-measured 
across strains possessing the wine (red) or the oak (blue) allele at the marker closest to the QTL. (B) The upper 
and lower series of three plots demonstrate two different ways that a QTL can increase the correlation between 
traits. Each point represents a yeast strain possessing either the wine (red) or the oak (blue) allele at a marker 
closest to a QTL on chromosome 15 (upper) or 8 (lower). In the upper plots, the QTL increases the correlation 
between nucleus shape and size ratio when it is segregating across strains. In the lower plots, the wine allele 
strengthens a correlation between bud shape and the position of the nucleus in the mother cell that is weak in the 
oak subpopulation. Numbers in the lower corner of each plot represent rB for the strains displayed. (C) 
Cumulative distributions display the extent to which binning cells or splitting strains resolves the difference 
between rB and rW. When calculating percent resolved (horizontal axes) we always plot the value in whichever 
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subset (e.g. wine or oak) this percent is greatest. If subsetting always worsens the discrepancy between rB vs. rW, 
we score this as 0% resolution. Only pairs of traits for which rB is significantly greater than rW are considered. The 
pink, green, purple and orange lines show the effect of splitting strains by whether they inherited the wine or oak 
allele at the marker closest to each of four QTL (colors correspond to QTL in Fig 1A). In these plots, comparing 
the solid vs dotted lines shows that splitting strains resolves the discrepancy between rB and rW more often for 
pairs in which both traits are affected by the QTL than pairs in which both traits are unaffected. The black lines in 
the leftmost plot summarize these effects across 24 QTL, displaying for each trait pair, the largest resolution in 
the rB vs. rW discrepancy observed across all QTL that affect the pair of traits (solid line) or all QTL that do not 
(dotted line). The red line shows the effect of binning cells by their progress through division, displaying the 
largest resolution in the rB vs. rW difference across all 16 bins.  
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Figure 6: Some MA lines display unique relationships between certain pairs of traits. In all plots, black 
represents the ancestor of the MA lines and colors represent MA lines with trait correlations that differ from other 
lines (strains: black = HAncestor, green = DHC81H1, red = DHC41H1, magenta = DHC40H1, blue = DHC66H1, 
purple = DHC84H1; see Table S2 in Geiler-Samerotte et al 2016 [50]). (A) Histograms display the number of MA 
lines with Pearson correlations corresponding to the values on the horizontal axis for four example pairs of traits; 
the number of bins is set to 30. (B) This plot displays, for each of the 94 MA lines, the cumulative distribution of 
the number of standard deviations away from the mean correlation across all trait pairs. (C) Plots display, for each 
MA line, the maximum deviation from the mean observed for any pair of traits (left) and the average standard 
deviation observed across all pairs of traits (right). 
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Supplemental Figures: 
 

 
Figure S1: Morphological differences exist between the parents of the QTL mapping family. Each density 
plot displays the distribution of phenotype values from yeast cells corresponding to the wine parent (red), the oak 
parent (blue), or all of the 374 progeny (grey) for the trait listed on the horizontal axis. Trait names in parentheses 
correspond to those listed in the CalMorph manual [52]. Before plotting, each morphological trait was 
transformed to have a mean of zero and a standard deviation of one across all strains. Each distribution represents 
at minimum 5,000 cells from three replicate experiments; distributions corresponding to progeny strains represent 
many more cells (70,000 – 200,000 depending on whether the trait was measured in unbudded, small-budded, or 
large-budded cells).  
 
 
 

 
 
Figure S2: Total numbers of cells imaged per each of 374 progeny strains. Each point represents, for one of 
the 374 progeny strains, the number of unbudded, small-budded, or large-budded cells for which images passed 
filtering (see Methods). Each boxplot shows the median (center line), interquartile range (IQR) (upper and lower 
hinges), and highest value within 1.5 × IQR (whiskers). 
 
 

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5
Circumference of

large−budded cells (C102)

De
ns

ity

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2
Shared nuclear area of

small−budded cells (D14.3)

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5 5.0
Long to short axis

ratio of unbudded cells (C115)

Wine
Oak
F2

A B C

10

100

1000

Unbudded Small
Budded

Large
Budded

Phase of cell cycle

N
um

be
r o

f c
el

ls
im

ag
ed

 (p
er

 s
tra

in
)

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700716doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700716


	

	

 
Figure S3: Comparison of correlation estimates obtained from correlation partitioning with those obtained 
from a mixed-effect linear model. Each point represents one of 350 randomly sampled trait pairs of the 5645 
total. Vertical axes display trait correlations estimated using the correlation-partitioning approach; horizontal axes 
display trait correlations estimated using a mixed-effect linear model that specifies the variance-covariance 
structure of the experimental design. 
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Figure S4: Single-cell morphological traits have higher weighted clustering coefficients (wcc) than expected 
given the distribution of rW. (A – B) Force-directed networks visualizing how pairs of morphological features 
correlate across clones in unbudded (panel A) and small-budded (panel B) cells. Each node represents a single-
cell morphological trait. The thickness of the line connecting each pair of nodes is proportional to rW. Node 
position in the network is determined using the Fruchterman-Reingold algorithm. Purple nodes correspond to 
traits influenced by a QTL on chromosome 13 containing the HOF1 gene. (C – D) Cumulative distributions of 
weighted clustering coefficients (wcc) in a network created using measured values of rW (red line) or in 100 
permuted networks (grey lines) for traits corresponding to unbudded (panel C) or small-budded (panel D) cells. 
Permutations were performed by sampling rW, without replacement, and reassigning each value to a random pair 
of traits.  
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Figure S5: Wishbone recapitulates time series data obtained in live images of 78 cells undergoing 
exponential growth. Each point represents a cell image. Horizontal axes display the minute that image was 
captured during a three-hour window of exponential growth. Vertical axes display Wishbone’s prediction of how 
far that cell image has passed through the cell cycle. Linear regression lines are calculated with the “lm” method 
in the R package ggplot2 [75], and are colored red for images corresponding to unbudded cells, blue for small-
budded cells and purple for large budded cells. Plots are organized by cell type and then from earliest to latest 
average predicted progress through cell division.  
 
S1 Table. Chromosomal locations, effects sizes and phenotypes affected by quantitative trait loci described 
in this study.  
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S2 Table. Impact of gene swaps on single-cell morphological traits including the corrected phenotypic 
difference between strains for each phenotype, and its standard deviation and standard error across 
replicate experiments. 
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